VC-35

Vacuum Checker Vacuum interrupter tester DC Hipot tester

User manual

Safety Recommendations

ALL WORK SHOULD BE DONE BY QUALIFIED PERSONNEL FAMILIAR WITH THE CONSTRUCTION, OPERATION, AND HAZARDS INVOLVED WITH THE EQUIPMENT.

Koncar-EASN products are not authorized for use in safetly-critical applications where a failure of the product would reasonably be expected to cause severe personal injury or death. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safetly-related requirements concerning their products and any use of Koncar-EASN products in such safetly-critical applications, notwithstanding any applications-related information or support that may be provided by Koncar-EASN.

Koncar-EASN products are neither designed nor intended for use in military/aerospace applications or environments.

Buyers acknowledge and agree that any such use of Koncar-EASN products whichKoncar-EASN has not designed as military-grade is solely at the Buyers risk, and they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Important User Information

This guide has been developed as a quick reference tool to Koncar-EASN industrial automation controls and factory assemblies. Because of the variety of uses for the products described in this publication, those responsible for the application and use of these products must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes, and standards. Factory provided user manuals and technical documentation should not be solely relied on for those purposes.

Koncar-EASN reserves the right to change the features or characteristics of its products at any time. Therefore, the information contained in this publication is subject to change at any time without notice.

The illustrations, charts, diagrams, and layout examples shown in technical documentation are intended solely as examples. Since there are many variables and requirements associated with any particular installation, Koncar-EASN can not assume responsibility or liability (including intellectual property infringement liability) for actual use based upon the examples shown in this publication.

Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

All products are sold subject to Koncar-EASN's General terms and conditions of sale, supplied at the time of order acknowledgment. Koncar-EASN warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Koncar-EASN's standard warranty. Testing and other quality control techniques are used to the extent Koncar-EASN deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. Koncar-EASN assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Koncar-EASN components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

Koncar-EASN does not warrant or represent that any license, either express or implied, is granted under any Koncar-EASN patent right, copyright, mask work right, or other Koncar-EASN intellectual property right relating to any combination, machine, or process in which Koncar-EASN products or services are used.

Information published by Koncar-EASN regarding third–party products or services does not constitute a license from Koncar-EASN to use such products or services or a warranty or endorsement thereof.

Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Koncar-EASN under the patents or other intellectual property of Koncar-EASN.

Reproduction of information in Koncar-EASN data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Koncar-EASN is not responsible or liable for such altered documentation. Resale of Koncar-EASN products or services with statements different from or beyond the parameters stated by Koncar-EASN for that product or service voids all express and any implied warranties for the associated Koncar-EASN product or service and is an unfair and deceptive business practice. Koncar-EASN is not responsible or liable for any such statements.

Performance Data

Performance data given in technical documentation is provided only as a guide for the user in determining suitability and do not constitute a performance warranty of any kind. Such data may represent the results of accelerated testing at elevated stress levels, and the user is responsible for correlating the data to actual application requirements. **ALL WARRANTIES AS TO ACTUAL PERFORMANCE, WHETHER EXPRESS OR IMPLIED, ARE EXPRESSLY DISCLAIMED.**

X-Ray Concerns

IEEE Switchgear Committee, Spring 2008.

A few facts should be mentioned:

At all voltages X-ray emission is zero when the interrupter is in the closed position.

At MV voltages (up to 38kVrms) X-ray emission is zero or negligible.

Generally, for MV circuit breakers significant X-rays could only be generated at test voltages exceeding 38kV. However once the system volts gets to much higher voltages such as 145kV then the possibility of X-ray emission becomes significant, although not generally a safety issue.

The real issue for designers is that it is possible for the interrupters to irradiate their local surroundings over a long period, and this may have a detrimental effect on polymeric components or electronics mounted in the circuit breaker locally to the interrupters.

VACUUM CHECKER VC-35 User manual 161021

Contents

Safety Recommendations	2
Important User Information	2
Performance Data	2
X-Ray Concerns	2
1.Overview	4
2.Connection and use	5
3.Technical specifications	6
4.Troubleshooting and maintenance	7
5. Ordering information	7

1. Overview

Continuous adjustable High voltage source 0...37,5kVDC

Designed to be used in Industrial and Power substations environment

Multi purpose testing of Vacuum Circuit breakers, cable insulation etc...

True ammeter reading (guard screened test leads)

Single scale voltmeter

Overload protected

Line variations independent

Built-in rechargable Sealed Gel Lead Acid Dry battery, 12V, 2Ah

Detachable high voltage cable with integrated cable storage space

Rugged, portable and reliable, simple tu use

Acoustic and visual signalisation when operated

Vacuum circuit breakers do not last forever.

Air is leaking inside vacuum chamber, dirt on the poles and on the exterior surface of the interrupter can reduce insulation, the mechanics of the breaker can become misaligned and the distance between the poles is no longer adequate.

Any of this will change flashover point of Vacuum Circuit Breaker.

VC-35 is portable High voltage DC source for generation of negative voltages from 0...37,5kVDC.

It is designed for shop an on-site testing of Vacuum Circuit Breakers, cable insulation etc...

High Voltage is generated by high voltage transformer and a full wave capacitive voltage multiplier with silicon rectifiers.

Accurate voltage measurements are made directly at the output and current measurements are taken in the return leg.

Test leads are compensated for leakage currents with cable guard screen for true ammeter reading.

Safe discharging of both the test object and the high voltage transformer occur whenever the high voltage is turned off. **VC-35** can be used powered from it's own battery power supply, approx. 15 minutes with full battery charge.

VC-35 is built in a handy carrying case with internal cable storage and well suited for field applications.

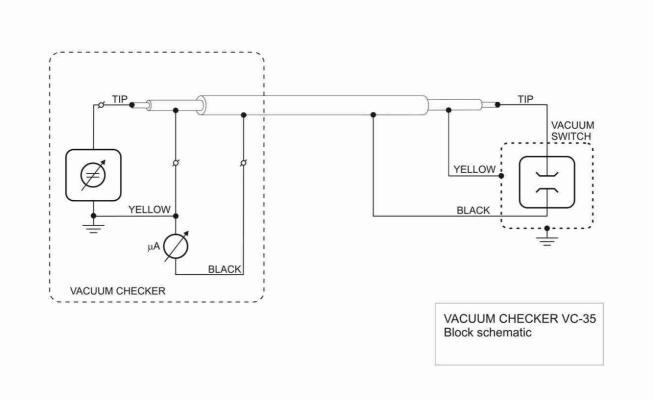


Figure 1: VC-35 Measuring principle with triaxial guard screened test leads

2. Connection and use

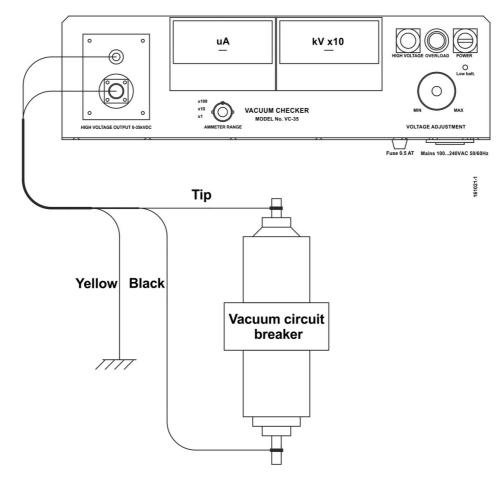


Figure 2: VC-35 Connection diagram

WARNING: HANDLING HIGH VOLTAGES!

TO PREVENT ELECTRIC SHOCK OR INJURY DURING MEASUREMENT DO NOT TOUCH CABLE CLIPS WITH HANDS

ALL WORK SHOULD BE DONE BY QUALIFIED PERSONNEL FAMILIAR WITH THE CONSTRUCTION, OPERATION, AND HAZARDS INVOLVED WITH THE EQUIPMENT.

- The Vacuum Circuit Breaker must be disconnected from High Voltage bus-bars and in OPEN position.
- 2. Prior to connecting mains, VC-35 power switch must be switched OFF.
- 3. Connect the power cable (100...240 VAC).
- 4. Set the "VOLTAGE ADJUSTMENT" into the position "MIN".
- 5. At first set ammeter range x100.
- 6. Connect the H.V. cable to VC-35.
- 7. Connect the yellow wire of H.V. cable to system ground.
- Connect the red connector (negative pole) of H.V. cable to one pole of the Vacuum Circuit Breaker.
- Connect the black connector (positive) of H.V. cable to other pole of the Vacuum Circuit Breaker.

- Turn the "POWER" switch ON. Yellow lamp "HIGH VOLTAGE" shall light-up. Buzzer shall beep.
- Slowly increase voltage using "VOLTAGE ADJUSTMENT" knob until you reach test voltage specified for Vacuum Circuit Breaker. Read the current at microammeter.
 - For guidance on allowed leakage currents refere to vacuum chamber manufacturer's specification and IEC 694 or ANSI C37-06 standards.
 - When the current through the Vacuum Circuit Breaker is greater then 0,5mA, VC-35 will automatically power-off. "OVERLOAD" lamp shall light-up.
- VC-35 may be operated from built-in battery supply approx. 15 minutes. For full output voltage the battery must be fully charged.
- Charging battery: Leave the mains power cable connected to VC-35 for 14 hours or more. The "POWER" switch during charging may be in "OFF" position.

3. Technical specifications

The specifications are valid at nominal input voltage, ambient temperature between 0...+50°C and relative humidity less then 90%.

Personal safety: Maximum transient current through the external load is 10 mA.

Maximum discharge time for internal high-voltage circuit is 0,5 sec.

 Output voltages:
 Model VC-35:
 0...37,5 kVDC, load > 100 Mohm, Ripple 3% max.

 Model VC-50:
 0...50kVDC, load > 100 Mohm, Ripple 3% max.

Output current: 0,5 mA max, limited Voltmeter range: 0...50kV

Voltmeter range: 0...50kV Ammeter range: x1 0...5 uA x10 0...50 uA x100 0...500 uA

Signalisation:

RED lamp: Overload (>0,5mA)
YELLOW lamp: High Voltage "ON"
Sound signal: High Voltage "ON "
e range: 0...+50°C (32°F...+122°F)

Working temperature range: $0...+50^{\circ}\text{C}$ $(32^{\circ}\text{F}...+122^{\circ}\text{F})$ Storage temperature range: $-40...+70^{\circ}\text{C}$ $(-40^{\circ}\text{F}...+158^{\circ}\text{F})$ Operating humidity: less then 90%RH, non condensing

Mains voltage:100...240V, 50/60Hz, 70VA, Fuse 3,15AT max.Built-in battery:Sealed Gel Lead Acid Rechargable 12V, 2Ah.Battery charger:Constant voltage, 14 hours full charge.Dimensions:Alu-case, 210 x 335 x 460 mm

Weight: 8kg (without battery), 9kg (with battery)
High voltage cable lenght: 3 m

Figure 3: Battery compartment (VC-35B only)



Figure 4: High voltage triaxial test leads assy

4. Troubleshooting and maintenance

- 1. Maximum voltage can not be reached:
 - 1. Units with rechargable battery:
 - Check battery. If necessary recharge battery.
 - Replace battery every 5...8 years.
- 2. Sound of high voltage sparks discharge from HV connector:
 - 2. Check High Voltage connector for dirt and or moisture.
 - Clean both sides of connector (on the case and on the cable) with soft tissue and isopropil alcohol. Do not use other solvents.
 - 3. Check ambient air humidity.
 - When rel. Humidity is higher than 90%, full output voltage may not be reachable.
 - Periodically replace desiccant (Silica-Gel) on the bottom of instrument case or when necessary.

5. Ordering information

When ordering please use the following part numbers:

Vacuum Checker 0...37,5kV, without battery: P/N: VC-35A
Vacuum Checker 0...37,5kV, with battery: P/N: VC-35B
Vacuum Checker 0...50kV, without battery: P/N: VC-50A
Vacuum Checker 0...50kV, with battery: P/N: VC-50B

Application information

Applications that are described herein for any of these products are for illustrative purposes only. Koncar-EASN make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Right to make changes

Koncar-EASN reserves the right to make changes, without notice, in the products, including circuits, and/or software, described or contained herein in order to improve design and/or performance. Koncar-EASN assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, or copyright to these products, and makes no representations or warranties that these products are free from patent or copyright infringement, unless otherwise specified.

Končar-EASN d.d.